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THE INTERACTIONS BETWEEN NITROGEN AND OXYGEN MOLECULES

By _'V1LLARD E. _[EADOR, JI'.

SUMMARY

A mathematical anal!Isis is gi_'en of the delta

Junction model for atomic interactions for the pur-
poses of (1) establishing conditions for which the

procedure is applicable, and (2) obtaining physical

in.tight into the rea._ons why the method, simple

though it i.% yields potential curves which are in such

good agreement with experimental data. Lippin-
cott's origi_al model is then extended to include the

different effects of K- and L-,_'hell electrons in, molecu-

lar bond (or antibond) formation, and a screening-

dependent parameter is introduced in the expression

for th,e deltafunctlon strength. In addition, modifi-
cations are made which make the model more general

in application- in particular, in regard to hereto-
nuclear molecules.

3[odified versions of the delta function model,

together with general valence bond and molecular

orbital theories and a reasonably exlensi_'e treatment
of resonance, dispersion, and co_guration inter-

action phenomena, are applied to selected excited

states o] the N2, NO, and 0._ molecules. The results,

in conjunction _cqth known spectroscopic data and�or

calculations of the ratios of exchange integraL', are

then used to find curves representing N:--Nz,

N_--O_, and 0_--0.., interactions, chosen because of

their importance in problems of aerophy._ics. Al-

though the absolute accuracy of the latter potentials is
di_cult to ascertain, they are at least consistent with

a_,ailable scattering and viscosity measurements, rlTds

is especially true o.[ the N2--N_ calculation in which

remarkable agreement with scattering experiments is

obtained. It is .further be[ieced that the points

covered in this paper will pro_'e useful in future

incestigations of the interactions between ions and
neutral species.

INTRODUCTION

Interactions between oxygen and nitrogen mole-
cules are of fundamental importance in the study

of atmosl)heric transport properties and other

phenomena associated with man's venture into

space (ref. 1). As a first step in the theoretical

investigation of scattering cross sections, for ex-

amt)le, it is necessary to have a fairly detailed

knowledge o[' the functional form of the interaction

potentials t)etwecn the elements of the gas under
consideration. However, the standard methods of

molecular quantum mechanics (e.g., the Iteitler-
London (re['. 2) and molecular orbital (ref. 3)

approaches), in spite of the very lengthy mathe-

matical procedures involved, do not result in

sufficiently accurate curves for quantitative analy-

sis. It is therefore necessary to develop new

techniques for the calculation of these curves or
else resort to their determination from experi-

mental scattering and viscosity data. The latter

can be extremely difficult and, while acceptable

as far as the end result is concerned, is certainly

not as satis[ying to the theorist as is the former.

Mason and Vamlerslice (ref. 4) have recently

presented a method for the calculation of inter-

molecular forces using a one-dimensional model
in which the nuclear-electronic coulomb potenlial's

are replaced t)y delta functions. Thus far, most

of the applications of this model have been made

on such simple systems as hydrogen (ref. 5) and

rare gas atoms (ref. 4) because of the spherical

symmetry an<t closed electron shells, which imply

only one possible interaction curve. The results

are in surprisingly good agreement with experi-

mental data in view of the simplicity of the as-

sumptions involved.
l



2 TECHNICAL REPORT R 68--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Despite this success, however, it has been O

generally conceded that the model is really only

semiempirical and that a cancellation of errors

plays a large part. in the results. The purpose of

the present paper is fourfold as follows: p
1. To analyze the delta-function model and

show why it works. P

2. To apply modified versions of the model to

N2--N2, N2--O_, and O._--O2 interactions, r

The first example is used to iron out many

of tile procedural difficulties and is chosen R
because of the chemical similarity of molec-

ular nitrogen to the rare gas atoms. Also R,_

experimental scattering data exists for this Sv

case.

3. To investigate the effects of a variable

screening parameter. V
4. To investigate the importance of disper-

sion forces, especially in regard to their

short-range cut-off behavior, l_

LIST OF SYMBOLS

a

a,A,B,

c,d

a,b

c

d

E

g
H

I
IH
I_
J_

N

radius of the outermost electronic shell x,y,z

in an atom

constants which appear in the approxi-
mate wave functions and interaction Z

potentials
coefficients of linear combination of a

atomic orbitals
variable used in the delta function a,/3

model and related to the atomic

energies at infinite internuclear sep-
aration 3'

molecular bond length
E

energy
delta function strength

total Hamiltonian operator

atomic ionization potential
ionization potential of atomic hydrogen X

ionization potential of atomic lithium g,v,_

exchange integrals between atomic P
orbitals i and j on different atoms r

ratio of squares of overlap integrals; q'

also resonance parameter
number of effective electron pairs in a q/

diatomic molecule

symbol for atomic nitrogen; also an
atomic orbital centered on nitrogen ¢

when used with the subserit)t z, y,

or z

symbol for atomic oxygen; also an
atomic orbital centered on oxygen

when used with the subscript x, y,

or 2

exponent defined in connection with

the delta function strength

probability of the resonance state
O+--N -

distance of an electron from its own

nucleus; also interatomie separation
distance between centers of mass of

molecules

position of Van der Waals minimum

overlap integral between atomic or-

bitals i and j centered on different
atoms

potential of electron; also interaction

potential for diatomic molecules as
defined in text

constant which appears in the expo-
nent.ial curve fit of several interaction

potentials
Cartesian coordinates of an atomic

electron; also variables defined in

connection with the overlap integrals

effective nuclear charge of L-shell
electrons

parameter in the modified Buckingham

empirical function

spin functions

parameter in the Hulburt-IIirschfelder

empirical function
variable related to the resonance pa-

rameter

half width of square well potential

(approaches zero to form delta func-

tion); also depth of Van der Waals
minimum

resonance parameter

elliptical coordinates
distance between delta function centers

volume element (dr)

interaction potential between mole-
cules

interaction potential between mole-
cules as obtained from an expo-
nential curve fit

wave function (subscripts o and n

signify ground and nth excited

states, respectively)
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to frequency of cosine wave function (see

eq. (4b))

Energies are given in units of twice the ioni-
zation potential of atomic hydrogen, or in electron

volts, as noted. Distances are given in units of

first Bohr radius of atomic hydrogen, or in ang-

stroms, as noted.

THE DELTA-FUNCTION MODEL

HYDROGEN-LIKE ATOMS

The wave equation for" a gq'mmd state hydrogen-
like atom is, in atomic units,

2r 2

where

Eo Z2 /Z_\_/2

',. lr /

and Z is the atomic number of the nucleus.

Now, considering the application of the Lap-

lacian operator in Cartesian coordinates to _o,
we obtain

6x_--\ r _ r_ Z),l,o (2a)

and

1 = I('Zek_Z 3Z" _ / Z e Z\
\ r r/

It is apparent then that the simple mathematical

procedure of reducing the problem to one dimen-

sion by taking the components y and z to be zero

in ¢o and equation (2a) results in

d_'¢'° (7_ Z Z'_a "
- gi-Tl/ .o (3a)

or

1 d'_¢,, Z _
2 dx 2 2 _o (3b)

This last equation is obviously equivalent, at.

least insofar as the mathematical eigenvalue

problem is concerned, to equation (la) but with

the very important physical exception that a

potential energy function is not included. The
fortuitous cancellation of the second and third

terms on the right-hand side of equation (3a)

is the crux of the simplification with the result

that the wave function of the atom may be

represented in one dimension by the dotted curves
shown in sketch (a).

E
O

?=

e-C¥

--COS w x

0

Sketch (a).--Thc hydrogen atom wave function in the

delta-function model.

The corree{_ excited state energies are also

easily obtainable from equ'Ltion (3b) by simply

using ¢.--exp(--Zlxl/n) , where n is the principal

quantmn number; however, tire situation tends
to become more obscure and further removed from

physical reality because of the fact that the

true wqve functions are not simple exponentials.

Since it seems possible to gel along so well

without worrying about a potential energy
function in the one-dimensional Hamiltonian, the

question might reasmmbly be asked, at this point,
as to why Mason and Vanderslice (ref. 4) bother

about introducing a square well at the position of

the nucleus and then letting the width of this well

approach zero and its depth approach infinity

in such a way as to degenerate into a delta func-

tion, especially since the correct energy wdues

are obtained without doing this and the model is
but a mathematical construct. The answer is

that in or(let to apply the method to the more
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complicated eases of molecules, it will be neces-

sary at least, that [he equations represent some
sort of physical situation, even though it might

not be that of an atom, and that they satisfy the

boundary conditions of general quantmn theory.

It is quite apparent that the latter condition is
not fulfilled in the above simplified model from

the mere fact that the slope of the wave

flmction is not continuous at the origin, an obser-

wttion which clearly indicates a potential center
at this point.

A possible procedure for circumventing t.he

above difficulty is to connect the two exponential

regions (i.e., exp(cx) for z<0 and exp(--cx) for
x>O) with a suitable even function of z, such

that the slopes are continuous, and then to find

the corresponding potential from which it can

origimtte. Perhaps the simplest such connecting
function is the cosine, the frequency of which

may be allowed to approach infinity, and which

is the wave function of a particle in a one-dimen-
sional box -hence the use of the ddta function

type of potential (see sketch (a)). It follows then
that while the delta functions associated with two

such atoms cannot, of course, overlap, the corre-

sponding wave functions can. The situation for
the individual atom is, in some respects, sunilar

to the "tunnel effect" in the a decay of radio-
active nuclei.

In other words, consider the x axis to be divide<l

into three regions with the following set of wave

funct.ions and potentials:

¢,= ;1 exp(cx), V=0(x <-- t) (4a)

_bH=B cos w.r, lr=--lro(--t_x_e ) (4b)

_k,,,--.l exp( ex), V-0(x> t) (4c)

where c is essentially an effective nuclear charge
and is equal to (--2E) 1/2 in this problem. The

parameter o_ is determined in such a fashion as to

satisfy the one-dimensional wave equation, in-

eluding the delta-function potential, and 2e repre-

sents the width of the square well. Thus

1 dz (cos ,0x) + V cos c0x= E cos _0z (Sa)

or

w2=2(E--V)=2(E+l'o)=--d+2IZo (5b)

The quantity _o must be real, of course, otherwise

,/'_x would be a hyperbolic function.

Now _'o may be obtained front the requirement
that the functions and their first derivatives join

smoothly at. the boundaries of the regions, that is,

l_'I---:-_II, lt_I"=¢II ! at, x=--e (6a)

¢II--¢III, _II/: ¢III ! at x=_ (6b)

This results in a_ tan _e=c and, since _ may be al-

lowed to approach zero without loss of generality

for purposes of simplification, we have

w2_= --e2_@ 21"o_ =c (Ta)

Letting g=c+dt, this yMds

Vo= g , _o2= -- d+ ge (7b)

]n this examph,, g_c, but this is riot necessarily
true in the ease of molecules. This point will be-

come dearer in a subsequent section of the report,

ell I_I2 +.

lit shouhl t>e noted here that the shrinking of

the width (2t) of the potential well to zero auto-

maritally leads to the increase of the depth (.q/2e)
to infinity, but. in such a way that the product of

widfll and depth is equal to g, a finite number.

Thus, the potential used here is indeed a dclt_L

function of strength 9; however, it is in no way

unique, that is, this is not the only way in which
a one-dimensional analysis can be made physically

phmsible.
Finally, it must be remembered in what follows

that, when use is made of this model, no coulonlbie

interaetion of any kind appeqrs explicitly in the

Hamiltonian operator of an atomic system.

Therefore, as follows from the first-order natm'e

of this procedure, imluclion and other second-
order effects must be added arbitrarily in order

to obtain a complele description of forces between

two or more interacting species. Moreover, any

analysis involving a three-dimensional quantity,
for example, angular momenta different from zero

and their interactions with spin resulting in fine

structure corrections, must be handled in a some-
what different manner. The loss of this type of

general physical insight, however, is not an un-
common occurrence when mathematical simpli-

fications are made for the purpose of dealing with

a more specific effect.
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THE Hr.,+ AND H: MOLECULES

Following Lippincott's (ref. 5) method of bring-

ing two delta-function atoms together to form a

delta-function molecule, we may divide the x axis

into five regions with the following wave functions:

¢,----Ae c_ (x<--2--_) (8a)

¢,,=B, cos _ox (--2--_ <x<--2+_ ) (8b)

¢'m= D[exp (-- cx) + cxp (ex) ]

_biv=B z cos cox _--e_<x_<2-l-t (Sd)

Cv------le -_ (x>__2d-e) (8e)

wtwre p is the distance between delta-function

centers. The positive sign is used in _*¢III tO make

the wave function symmetric in an interchange of

nuclei, since, by general molecular orl)ital theory,

this corresponds to a concentration of probability

density in the region between nuclei and leads,
therefore, to the lowest energy.

[;sing equation (71)) and applying the appro-

priate boundary comlitions to the region end-

points results in the equations

C2
E-- (9a)2

c=g(1 q-e -_p) (9b)

_q2
E=--_ 2 (l+e-_P)2_--_ - (l+2e -*p) (9e)

Equations (9b) and (9(') may now be solved

simultaneously to determine c and E as a fimc-

tion of the delta-fimction separation o. The

parameter g is, of course, determined simply by

the requirement that the energy approach the cor-

rect isolated atom energies as o goes to infinity
((l--1 for IL, + and 2_/2 for II_).

Lippineott now makes the further argument

that the approximation should be considerably

improved by using "floating" delta functions,
that is, by allowing the delta fimction centers to

be shifted off the nuclear centers. This procedure

will clearly enable the charge distribution to be

more concentrated it, the region between nuclei

(o<r=internuclear separation) in the case of

bond formation and in the regions outside of the

nuclei (p>r) in the case of repulsive states.
This is essentially equivalent to the shifted

atomic orbital procedure as applied to H2 by

Gurnee and Magee (ref. 6) and to II3 by Meador
(ref. 7), and it is also similar to second-order

perturbation theory in which, for example, hybrid

1._ and 2p orbitals are used for 112 in the ground

state (ref. 8). The methods for specifying p as a

function of r will become apparent in the next
section.

THE 7Y"]u+ EXCITED STATE OF N2

In a recent paper Vanderslice,, Mason, and

Lippincott (ref. 9) applied the delta-function

model to the cah'ulation o1" the energy of the
7y], 4- state of N2, in which all the wdence electrons

are unpaired. The mdisymmetric wave functions

appropriate to repulsive states were used in place

of the symmetric, ones discussed previously and
resulted in the equations

c=g(l-e-_) (10a)

_ g 2

E= --_- ( 1-- 2t-*P) (10b)

where n is the numl)er of electron pairs (seven in

this case). The assumption is made that the

many electrons may bc replaced 1)y a single
effective charge distribution; more precisely, the

total interaction energy consists of _ times the

average interaction energy of all pairs of electrons,

as for two hydrogen atoms.

The interaction energy may now be expressed as

V(r)=E(r)--E(_)=ng_e -_p (11)

where

p=r+2ae -'I_ (12)

This last equation is merely a simple way to

satisfy the requirements:

(a) p>r(repulsive state), v-_r as r-->¢o

(b) p(r=O)--2a, where a is the average ra-
dius of the outermost electronic orl)it of

an isolated atom (a=0.56 _ (ref. 10)

for nitrogen)--thc "united atom."
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With the idea that the delta-function strength

(g) may be regarded as proportional to the
ionization potential of an isolated atom, as implied

by the earlier scattering investigations of Bloch
for heavy targets (ref. ll), one obtains

(t3)

where I and In are the ionization potentials of

atomic nitrogen and hydrogen, respectively. This

procedure finally 3ietds a potential energy which
can be represented by the expression

V'(r)--317.8 exp(--2.753 r) (14)

where r is measured in ang'stroms, and V is in
electron volts.

The present paper is an extension of the above
work in that allowances are made for the smallness

of the contributions of the inner or K-shell elec-

trons to the repulsive forces between atoms (or
to bond formation in the case of bound stai_,s).

The question is raised also as to whether the

delta-function strength should be proporlional to

[ or to F/2, or perhaps to some power m between,

especially in view of the fact that equation (13)

signifies a discontimfity in going h'om hydrogen

(g_-.F/_) to a more complicated atom (g--_/). As
a more natural assmnp0on, the introduction of a

variable parameter in order to make this transition

less abrul)t seems appropriate. In addition, since

there are only five L-shell electron pairs involved

in N_, it is expected that the final form for g

should more closely resemble that for hydrogen

than for the heavy atoms.
The first extension involves a comparison with

lithium instead of hydrogen in the equation for

g. In this case tim following system of equations

resuhs (energy in electron volts, and r in

angstroms):

r 164e ,/0._8 (15a)p=_2,V2 +2.1

where p is a number, to be determined, between

one-half and unity.

A comparison of this approach with experi-
mental data will be given below, where it, is shown

that p=}_ gives very good results. This corre-

sponds to g= 2( I/27.206) _t2 so that the interaction

energy may be represented (after some manilmla-

tion using Newton's ileraiion procedure and curve

fitting) by the expression

V(r)=253.9 cxp(--2.716r) ev (16)

It shmfld be noted here that the method of approxi-

mation of perfect pairing, as employed in subse-

quent sections of this report, involves only 2p type

electrons in a description of interatomic forces.

For this reason, it perhaps would h'_ve been more
consistent to have considered three electron pairs

in equation (15d), instead of five, and to have used

boron, instead of lithium, in equation (15b). The
above treatment emphasizes the shell structure,

and hence regards only the two ls electrons as

being transnuclear, whereas the latter points out
the division into subshells and is used only in

finding relationships between energy states.

Equations (15) point out clem'ly the advantages

of using the delta-flmction model, at least from the
standpoint of mathematical simplicity, since the

wave equation becomes completely separable in

the electron coordinates, and complicated coulomb

and exchange integrals, etc., do not enter the

picture.
THE N,-N_ INTERACTION

The approximation of perfect pairing (rcf. 12)
describes the intcraction between two nitrogen

molecules as simply the sum of four atomic inter-
actions. In the ease of neutral species (i.e., neg-

lecting any ionic contributions due to resonance)

the interaction potential is thus given by a partie-

uhlr sum of exctmnge iniegrals as follows:

. 1

where

)/" /s_ -,Qiz/ I'_p 9#/5.363_/_/ 14.48"_p

(15b)

c --g(1--e -_' ) (15e)

V(r) = 5(27.206)g2e - _p= 136.0392e - _" (15(t)

_-]_ the sum over orbitals with paired spins (anti-

parallel)

]V]: the sum over orbitals with parallel spins

_--]a the sum over orbitals with nonpaired or ran-

dora spins
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The choice of coefficients, of course, follows

directly fi'om simple wdence bond theory. For

example, the faetor--Y_ in the last term is a con-

sequence of the fact that this represents a eom-

pletely random situation and the degeneracies of

paired and parallel spin states are one and three,

respectively. The exchange energy is, therefore,
/ 3/(h-- _4)J,j = -- Y2J,_.

Further assumptions concerning molecular in-
teractions are :

1. The exchange inte_als are essentially the

same as would prevail if the atoms were

isolated instead of being members of mole-
eules. The directions of the distortions

experienced by the electronic charge dis-
tributions as the molecules approach each

other certainly tend to make tiffs approxi-

mation good and, in any ease, the en'or in-

troduced is probably very small for the

distances under consideration (2.4 [o
3.2 X).

2. The resonance contribution is insignificant

because of the small electron afl3nity of
molecular nitrogen• In nanny respects N2

behaves like an inert gas atom so that Ne-

ts extremely unlikely.

3. Only the valence 2p_, 2p_, and 2p_ atomic

orbitals are considered as eontril)uling to

the exchange forces t)etween atoms.
4. The eoulonlb interaction belween neutral

molecules is negligible at faMy hu'ge inter-
nuclear separation in comparison with the

exchange forces.

5. Only one N2--N2 interaction curve is con-

sidered to be of importance, that is, the

possibility of chemical reaction is i_no,'ed.

The 7Y2,+ state of X,: may now be represented by

V(r) = -- (J,,+ 4,-}- J,,) (1 r)

and the interaction between nitrogen atoms, either

or both of which are members of moleeuh,s, by

molecules is then given by the sum of the four

interactions between their constituent atoms, four

in all, and depends implicitly on their relative

orientations. For eomparison with ex'perimental

scattering and viscosity data, it is convenient to

average geometrically (ref. 9) over all possible

orientations, which yields for the average *-N'2--N.,
interaction

e_(R )=41"oe-"R(baRd2)-x[2(b R + 2)(cosh bd--1)

36.0
--2bd sinh bd]----ff_- ev (20)

where

R

d

--36.0/1:6 London dispersion or second-order per-
turbation energy (ref. 14)

Calculated values of q' h'om this equation and from

36.0
• '(/?)=.le "'_- R----r (21)

where A=658.66 antl B--2.630 for p=0.5, as
obtained from emwe fitting, are presented in table

I. 2also shown is the energy for i,=0.0 in order

to show the trend when this parameter is varied.

Comparisons between the theoretical results of

this paper and those of Vanderslice, Mason, and

Lippincott (ref. 9), together with the experimental

data of Anldln', Mason, anti Jordan (scattering

measurements, ref. 15) an,l Mason and Rice (vis-
eosity measurements, rer. 16), are presented in

table II and sketch (b). The excellent agreement
would seem to justify the present approach.

There is, however, a discrepancy 'tt large R

where the theoretical curve does not approach

zero as rapidly as the viscosity data, but this may

be due partly to the inadequacy of the experi-

mental results in this regmn. It is also apparent

TABLE I.--Na--N2 INTEI1ACTION ENERGIES

distance between the centers of mass of
the molecules

bond length of X2=1.094 .__ (ref. 13)

I
V' (r) _---_ (J_+ J,v+ J,z) 0S)

Combining equations (16), (17), and (18), we
have

lit(r) 17oe-_ .... 127.0e -2'_'6' ev (19)v'(;.) =_

The total interaction between two nitrogen
544424-61---2

R

2.4

2.5

2.6

2.7

2,8

Eq. (20)
_t.lld

p =0.6

O. 6272

• 4637

• 3.111

• 2494

.1812

Eq. (20)
and

p=0.5

1.0071

• 7726

• 5911

•4508

.3429

Eq. (21)
and

p 0.5

1. 0080

. 7723

• 5905

.,1507

• 3432
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TABLE II. COMPARISON OF N2--N., INTER-

ACTION ENERGIES

R

2.!

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Calcul'tted

Ih,f. 9

1. 190

905

692

527

400

303

229

173

130

Eq. (21)
and

p :0.5

I. 008

772

591

451

343

261

198

149

I12

Measured

Ref. 15 Rcf. 16

1. 045

757

568

440

336

257

200

157

0. 093

• 050

• 023

.01I

• 005

1.2

.8

<D

.4

k Calculated

XN--- ref. (9)

Measured .)_

[ ref.(16) ..........

0
2.4 2.8 5.2 5.6

Sketch (b). Comparisons of N2 N2 interaction energies.

that the two theorelieal curves converge at large

dishmces because of the decreasing importance of

distinguishing between K-and L-shell electrons.

Finally, the fact that the curve of this paper lies
below the one derived from scattering dat'_ for R

less than about 2.45 is due primarily lo the in-

al)llity of the modal to account for the strong
repulsive forces encountered when the electronic

eharge distritmlions effectively overlap; that is,
the dialonfic theoretical curve for the 7y_+ ex-

cited st'tte does not approach infinity at r equal to

zero. The specific neglect of coulomb interactions
in tim Ilamiltonian operator apparently is valid

only when the intermolecular separation is large

enough that the forces (other than exchange)

between individual particles caned out. These

arguments titus make clear the ]imihttions of the

delta-function simI)lification and point the way to

the modifications necessary when one or both of

the interacting species is an ion.

Finally, another lower limit on the dishmce
between molecules, insofar as this theory is con-

cerned, is the point at _lfich the procedure of
averaging over orientations becomes invalid.

Such a point would correspond to a separation

at. least as great as 2(d/2)=1.094 :__.

DISPERSION FORCES

The discrepancy between theory and experiment

at small R (sketch (b)) may, to a minor extent

compared to the reasons stated in the preceding

section, be ascribed to the poor expression for the

dispersion term. The approximations involved
in the dm'ivation of this term are such that, in

short-range interactions, it. is usually better to

neglect dispersion entirely in comparison with the

fh'st-order energies. For this reason it wouh[

prol)ably have been more realistic to have omitted
the term--30.0/I? '_ in equations (20) and (21);

however, because of its not insignificant contri-

bution to the tohd energy (--36.0/R 8 varies from
--0.188 a! I?--2.4 to --0.075 at R 2.8), an attempt

must 1)e made to compensale for the omission of

the term t)y allowing the p of equalion (15b) to

be greater than 0.,5.
The best a_'eement with experiment is obtaine<l.

and to this extent the entire procedure must be

regarded as essentially semiempirieal, if p is taken
to be 0.55. The results are shown in table HI,

where column 2 wdues were calculated using

equation (20) without dispersion and ('olunm 3

TABLE III. Na--Na INTERACTION ENERGIES

i
i

, (20)
,nout,

_por-
:ion
tnd

0.55

000

759

575

,t36

• 330

25O

I89

E(ls !o0) Eq (21)
Eq. ('22) a t and i Rt

00_ _ 705d) ! p=0.5

75;, i
575 ! ,575 .591 !

329 332 . 343 .

249 I .251 / .261 / "

189 .190 [ ,198 [ .
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corresponds to the associated exponential curve
fit given by

4b' (R) = 800.52 exp(--2.784R) (22)

Cohunn 4 of the same table results from using

an equation of the form (15d) directly in the

expression for q)(R), instead of going through the

intermediate step of equation (16), and the two

remaining columns are reprints from table II for
purposes of comparison. Thus, at ]east in the

range 2.5<R_2.8, this last description of the

interaction does an even better job of matching

the scattering data, as the average discrepancy

between theory and experiment at the points
cited is reduced fronl 0.014 to 0.004 ev. The

inadequacy of scattering measurements apparently

begins to take hold for R greater than approxi-
mately 2.9.

In addition, a graphically constructed con-

neeting curve between the present theoretical

results and those obtained from viscosity (Iata

could yield a wduable empirical determination of

the effective reduction factor and short-range

cutoff of the dispersion forces. This will 1)e shown
more clearly in connection with N2--O_.

For further comparison with the work of Van-

derslice, Mason, and Lippincott (ref. 9), a cal-

culation of the interaction energy between nitrogen

atmns a,td molecules was made using equations

(15) in conjunction with p=0.55,

1
V'(r) _:_ l'(7_]+)---Voe -b_ (cf. eq. (19)) (23)

and

Equation (24), of course, follows from the same

type of averaging procedurc as that used to obtain

equation (20), and the internlediate stage of equa-

tion (16) was again onfitted; that is, equation (23)

was used for each value of R hut no attempt was

made to represent the entire range by a single

exponential function.
The results are shown in table IV and sketch (c).

There are, unfortunately, no experimental data

available to check their validity. The Vander-

TABLE IV.--N--N2 INTERACTION ENERGIES

R

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Eq. (24) Ref. 9

0. 376 0. 550

285 418

215 318

163 242

I23 184

092 140

070 107

.6

.2

4 I

//

eq, (24) .1

I I I t I

2.6 2.8 3.0
o

_A

Sketch (c).--Comparisons of N--N2 interaction energies.

slice, et al., (rcf. 9) curve was cah'ulated from

4h' (R) _-387.8 exp(--2.733R) (25)

To summarize, the exponential curve fit of

equation (22) provides a very sunple function for

use as the repulsive part of the potenti_fl appearing
in cross-section and transport integrals. The

neglect of dispersion forces at large distances, ]tow-
ever, prevents the usual potential minimum, which

occurs at 5.160 A as computed from equation (21)

with the term --36.0/R 6. The corresponding wdue

of the potential at this point is --0.0011 ev, whereas

the Vanderslice, et al. (ref. 9), equations predict
--0.0001 ev at 5.203 ._. On the other hand, in

high-energy scattering experiments, the effect of
this attractive contribution is often quite negligible

and equation (20), without dispersion and without
further modifications, should give very adequate

results for lhis type of measurement.
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INTERACTIONS BETWEEN NITROGEN

AND OXYGEN

METHOD

For the interaction between nitrogen and o:_-gen

atoms, both of which are members of their respec-
tive Na and Oa molecules, the approximation of

perfect pairing yiehls

1 l 1

l 1j l

where tile x axis is taken [o coincide with the line

of nuclear centers. Here again o,dy p lype
alomic orbihds are considered and adwmtage

has been taken of tile small electron aftiuity of

Since symmetry requirements dictate that Jvv
is identical with J_, the above expression can be

immediately reduced to

2 4-9 (26)V(,')=-- 5 (J_. =J,,)

In previous papers (refs. 9 and 17) eml)]oying

this approach it has been customary lo eliminate
J:, and Jy_ from similar equations by using lhe

same approximation of perfect pairing in connec-
tion x_qth various slates of associaled diatomic

molecules, the potential curves of _qfich are

obtained from spectroscopic data or by 'MotH ing

the delta-function model. Such a procedure was

particularly simple in the case of Na--N-_ because

of the ahnost trivial relat ion expressed in equation

(19); in other words, only one diatomic state had
to be considered and this was especially adaptable

to a delta-flmetion treatment. Tlw present prob-

lena ia considerably more complicated because of

the following th,'ee majo,' factors which enler into
the nih'ic oxide calculation:

1. Any atteml>t to use a delta-function model
must lake into account the fact that there

will be two different sets of delta-function

strengths and "floating" parameters.

2. The appearance of four p electrons in

atomic o.xygen implies the existence of
three-electron bomls or antibonds in the

states of nitric ozdde. Thus, a careful

analysis of the appro_mation of perfect

pairing, which wo,'ks so well in tile case of

N2, becomes necessary.

3. The possible attachment of the "extra"

oxygen electron to the nitrogen atom to
form a resonance N---O + state must also
be considered.

The addition of an associated resonance parame-

ter to the two unknown exchange energies in

cquation (26) requires a minimum of at least ttwee
independent relations to solve uniquely the

N_-O_ probh,m. Unfortu,mtely, only the A'2H

_'ound state of nitric oxide is sufficiently stable 1o
provide enough spectroscopic dala for an appli-

cation of the Rydberg-Klein-Rees semiempirical

method (refs. 9 and 17).
hi a recent paper by Vanderslice, Mason, and

Maiseh fief. 17) lhese diffh'ulties are more or less

avoided by some art)it,'ary assumptions concerning

the resonance l)henomenon. In addition, a some-

what (luesiionat)h, method of obtaining the 1)ound

ql stale of NO, by using the spectroscopic con-

s(ants of the corresponding stale of Oa+ in a
Hulburt-IIirschfelder fi,,wtion, is employed. It

is shown in the present work that a more consistent

determination of the inleraction potentials is
obtained when a deha-funetion model is used to

calculate the resonance parameler. A derived

relation involving the ratio of exchange integrals,

together will, the afo,'eme,ltioned .Y-"II ground

state data, is then suffMent 1o specify completely
the molecular interaction.

THE RESONANCE PIIENOMENON

As mentioned above, the ground stale .YeII

potential curve of nitric oxide has been cah'ulated

by Vandersli('e and co-wo,'kers using the Rydbe,'g-

Klein-Rees semiempirieal procedure. It has also
been shown (ref. 17) that the long-range tail of

this curve joins smoothly with the following
Ihdburt-IIirschfetder expression (ref. 18):

$'(-_H) -- 6.609 [(1--e _)=

+0.06rs0 (l+2.06ae)e-=L ] ev (27)

wllPFO

(r-- 1.1508"_
5=3.I579\- T.iS-@ /

and r is the distance between atoms (in angstroms).

If the customary molecular notalion (ref. 13)
is used, the confi_mttion of the seven wdence p

electrons may be described by

(ny (n,) 2
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where the molecular orbital wave functions are

apwoximately given t)y

II, :aO,+ bN_

II_* :aOz--bNz, etc.

and where a and b are coem('ienls of the linear

eombhmlhm of atomic orbitals. The O, and N_,
of course, refer to 2p_ atomic orbiials centered on

oxygen and nit rogen, respectively

An aplflicalion of the approximalion of perfect

pairing leads to I'(2II)--J_-l-J,_v plus the contri-

bulion fronl the remaining H_ and lift nmh,cular
orbitals.

This last term, however, concerns lhree ('lee-

Irons, and the aforementioned simph, i]mory is not

adequale to describe such it situation. A very
feasible extension i/as been suggested by Linnett

(ref. 19) in lerms of a mixture of alomie and

molecular orbitals, which follows direelly from the

properties of matrices and delerminanls. The

basis of lids procedure is easily seen from a con-
sideration of the case where on(, eh,elron is in the

1-17_orbital and anolher is in the H=* orbilal and

where befit have their spins in lhe same dh'ection.

The wave funclion for lifts l_vo-eh,clron problem

is lhen given by

¢'"" II_ (l)a(l) II_* (l):il))I_Uz(2)_(2) n=*(2)

= [aO_ (1)+bN_ (I)]a(l) [a,O_ (1)-- bN. (1)]a(l)
[a0,(2)+bN,(2)]a(2) [aO,(2)--bX,(2)]a(2)

Adding the second eolunln to the fii'sl, dividing

by 2, subtriieling lhe restllling firsl co]unto from

the second, and filmlly multiplying by 1/a and

--l/b, gives, apart from n eOllSlall| file|or,

O:(1)a(1) X,(l)a(1)
¢_ O,(2)a(2) N:(2)a(2)

In other words, in the description of lhese two

eh,cirons, il is irrelevant whelhcr they are said to

oeeul)y tile molecuhll' orbitals or lhe corresponding
atomic orbitals, lliat is, file contribution to I'(2H)

is --Ju,_ regar(lless of the viewpoini taken.

The remaining eleetron in lhe three-electron

bond must, in oMer to satisfy the Pauli principle,

have a spin function 5 and may roughly be con-

sidered as occupying the molecular orbital II_.

But what. is ils eonlrilmtion to the hileraelion po-

lential? One might reasonably expect lo find that

since this single dec'iron forms a one-electron bond,

and since the strength of such a bond is usually

about one-half lhat of the correspomling two-

electron bond, it fairly good approximation ought
to be

V(2II) --- J_+l 2 Jv,J

This queslion will now be more thoroughly in-

vesligated in the light of lilt' nmle('ular ort)ital

theory.

Using the ideas of Linnett and allowing the

extra electron to be located either in IL or ll**, we
have for the three-electron wave function

I O_(1)oe(1) N,(l)a(l) O:(l)fl(1I

¢_a.[ 0:(2)a(2) N,(2)a(2) O=(2)fi(2)

lo,(a),_(a) x,(3)c,(3) o,(,_)_(3)

±b

Oz(1)_(l) X,(l)a(l) N,(I)5(I)

o,(2)_(2) N,(2)_(2) x,(2)_(2)

O,(3)a(3) N,(3)a(3) Nz(3)_(3)

We expand these determinants and neglect the

nnlltil)le exchange inlegrals giving rise to the pos-

sibility of all three electrons being exehariged l)e-
lwoen the two atoms. Such interaclion terms are

usually quite small in comparison with other con-

tributions, as can be seen fl'om overlap considera-

tions. The interaction potential is then found
to be

17=--a2(O,N,:O,N,:O,O,)--b2(O,N_:O,N_:N_N,)

±2ab(O,O,:N_N_:O,N,)

where

(O:X,:O_X::O,O_) =f[... o_(_)o,(2)o,(a)l*

II[. . . N,(1)N/2)O,(3)]dr, etc.

H is the ttamiltonian operator of the entire sys-

tem, and the ast.erisk (*) signifies taking the com-

plex conjugate.

In general, if O and N are laken to represent

symbolically any two atoms, lhere are two extreme
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cases to consider as follows:

(1) Suppose that N, for example, refers to an
atom whose electron affinity is zero, so
that the coefficient b vanishes. Normali-

zation then requires that a be equal to

unity and results in

V= -- (O,N,:O,N_:O_O_) =-- J_

where the last equality follows from the

defiuition or exchange. In other words,

the quantity in parentheses refers to the
situation in which two electrons are ex-

changed back and forth between N and

O, whereas the ttfird electron remains sta-

tionary on the O atom. Moreover, this

interpretation is certainly consistent with
the approximation of perfect, pairing be-

cause the spins are random, in which case
we }l_lve

• 2

(2) Suppose that N and 0 now _'efer to the

same type of atom, for example oxygen,

so that the coefficients, a and b, are each

nearly equal to (2) -_/2. The interaction

potential then becomes

V_-- J_ ± (O,O,:N_N_:O..Nz)

where the last term signifies one electron
on one atom, another electron on the

other atom, and the third electron equally

dividing its time between lhe two atoms.
Thus, this last integral, together with its

coefficient (unity in this ease), is called a

hybrid coulomb-exchange integral, and

it. clearly provides a measure of the im-

portance of resonance configurations.

Also, it is quite obvious from the form or

the integrqls involved that a good ap-

proxinmtion to V should be

where X is a resonance parameter and, in

general, depends on the interatomic sew
aration. Vandersliee, Mason, and Maisch

(ref. 17) set this quantity equal to a con-

slant, 0.5, but it will be treated here as a
variable. The plus sign, of course, refers

to the "extra" electron being in the II:

orbital and the negative to II,* occu-

pation.

Going back to the original problem of the ground

state of nitric oxide, it is certainly to be expected

that the resonance parameter, X, will lie somewhere
between its maximum value in case (2), in which

the resonance is complete, and its value of zero

in case (l). ltowever, we still have to develop a

procedure for its calculation.
Since (O,O,:N.N,:O,N,) must be greater tlmn

J.. because of overlap considerations, and since
X must vanish whenever a or b is zero, a reasonable

functional form seems to be

X 7ab

where 7 in general depends on the interatomic

separation and is greaicr than 2 in the case of

complete resonance.
To the extent that _, can be regarded as conslant,

an assumption whicl_ will not be used in our future
calculations, its value may be determined by a

consideration of the problem described in ease

(2) above, in which a and b are both nearly equal

to (2) -_/_. Since this situation implies that the

extra electron is just as likely to be found on O as

on N, ib can 1)e imagined that tile contribution of
the three-ele('tron bond to the interaction energy

of tile (H_)-_(II_ *) st'tte is

that is, _,_3 (an excellent example is the resonance
stabilization of IIea+).

Proceeding one step further with this idea, it is

now possible to derive an expression for the prol)a-

bility (P) of the resonance ionic state O+--N -.
This probability is equal to b: and, by using the

normalization condit, ion a2-_, b := 1, we can write

P_ 1--a _

where

X X
a=3b--3p_/_

Eliminating a and solving the ensuing quadratic

equation yMds

(28)

1



THE INTERACTIONS BET'WEEN NITROGEN AND OXYGEN MOLECULES 13

A somewhat better determination of the reso-

nance parameter may be obtained by a considera-
tion of the ground .Y21I state of nitric oxide in
conjunction with the excited _ state, which will

be described in file next section by use of the

delta-function model. The electronic configura-
tion of this latter state is

02 0d)_(IL) (rid) (rS) (n,*)

so that the two energies involved are

and
V(2II) = J_+ XJ_ (29)

V(°X;)=- (I+X)G,--2J._ (30)

THE 6_ STATE OF NO

A brief study of the potential function given in

equation (30), especially when cognizance is taken

of the fact that d_ is usually many times greater

than J_ in magnitude, clearly indicates that this

particular s_ state of nitric oxide is the most
repulsive one obt.finable h'om ground state atomic

m'bitals--at least as long as the interatomie

separation is not so small that the eoeffmients of
linear combination of atomic orbitals arc effec-

tively different for r[ u and ri0*. In addition, it,

should be noticed that _ type orbitals are empha-

sized, so that eveF.ything seems to point to this
being the state nlost accurately described by a
delta-function model with its associated hydrogen-

like approximation of taldng average electrons.

As pointed out earlier, the situation in the case

of heteronnelear nmleeules is complicated some-

what by the existence of two sets of delta-function

strengths and shifting parameters. Ilowcver, as

will be justified later in connection with the treat-

meat of exchange integrals, it. is a good approxima-
tion to take the geometric mean between corre-

sponding homonuclear moh, cules, O_ and Na in

this problem, in which case the new potential
function becomes

by expressions similar to those in equations (15)

and, in particular, values for c2p..,and g2, as well as

p, may be obtained from the previous calculations

on nitrogen. Since the parameter p depends pri-

marily on the nmnber of ch,ctron pairs involved

and seems to be faMy insensitive to a small

ch,mge in this number, the assumption that

p=0.55 for O_ as well .s N_ is prohaldy not too

bad. Thus, the only additional information
needed is tile radius of the outermost electron shell

of atomic oxygen, defined as the distance at which

the electron charge density is a maximum and
caleulated to be 0.48 _\ by use of empirical screen-

ing parameters (rcf. 20) in Slitter atomic orhitals,
and the corresponding ionization potenti,1 (13.550

ev).

A straightforward caleuhttion, using Newton's

iteration procedure to solve equation (15c),

yMds the results presented in the third column of
/able V. Also sho_m in this table is the interac-

tion energy corresponding to the X2lI state, as

computed fi'om the tIulburt-Hirschfehler function

in equation (27).

TI-IE RESONANCE PARAMETER

It will now be convenient to define a new pavan>

eter k as the ratio of exchange integrals ,J_z to

Jw. Equations (29) and (30) may then l)e
writ ten

V(_r0 = Gg_-+x) (32)
gild

V(6_2,) = -- J_/k+ 2+kx) (33)

Dividing the first by the second and solving for

X yields
--[t'V(°_) + (t'+ 2) V('n)l

X= V(6 y-_,) +kV(2Ii) (34)

where everything on the right-hand side is'known

with the exception of/c. Notice that X approaches

TABLE V.--ENERGIES OF TIIE XqI AND _'_,,

STATES OF NITRIC OXIDE

V(6_, )= (n_n2) _/2(27.206 ) glg.2 exp [-- (e'P2+ e202)'_ e v

(31)

where the subscripts 1 and 2 refer to oxTgen and

nitrogen, respectively; for example, nt=6 and

The values of c_, m, and g_ arc, of course, given

r

2.5

2.6

2.7

2.8

2.9

X2H a'_

--0. 1718 O. 2693

--.1307 .2033

- .I009 .1533

-.0788 .1156

-. 0621 .0872
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zero as _: approaches infinily (see table V).

In order to determine this 1,st parameter, use

is made of the fact that the exchange ener_es

should, in a major way, be depei_dent on the

corresponding overlap integrnls. In fact, a rea-

sonable approximMion would appear to be the

following:

J_ (0_N_:0_N_)_ Sff[(0.0_:0_0_)

q- (N_N_:N.N.) q- 2(0.0.:N.N_) ] (35)

1 o
J_,, (O_No:O_N_) _--_ S,,-[(O,O,:O_Ov)

+ (N,N_:N_Ny) q-2(O_O,,:N_N,,)] (36)

where

(0_X_:0_X_)=.[i.... O_(1 )O_(2)]*

H[... N,(l)N_(2)]dr, etc.

H is the eomlflete lIamillonian operator of the

entire molecular system, and S, is the ow,rlap

in t egral t0___*N idr.

Each of the integrals appearing in the right-

hand members of equations (35) and (36) repre-

sents alomie plus coulombic energies. Since the

eoulombie ener_es may be shm_m to be essentially

independent of whether p_ or p_ is used and to

constitute only about 0.08 percent of the atomic

energies for the distances under eonsideralion, we

have to a good approximation (since E_ is small

compared with E)

(0.0z:0.%) _ (0_0_:0,0_) = E(0)

@ E(N) @ E_(0) -- ]_.'I(X) (37)

(N_N.: N.N_) _-. (N_No: N_N_) _ E(0)

+E(N) --E, (0) q-E_ (N)

alld

(38)

(O.O_: N_X.) _ (O_O_: N_N_) _ E(O) -t-E(N) (39)

_du,re E(O) and E(N) are the total energies of

atomie o_-gen and nitrogen, respectively, and

E_(O) nnd E_(N) refer to the corresponding one-

electron energies. Thus, the expressions for J_,,

and Jv_ reduce to

alld

so thal

j_ = G/[E(o) +E(N)] (40)

J_ _ S.d[E(0) + E(N)] (41)

(S_') 2 (42)
k \&_.

The overlap integrals may be evahmled nsing

elliptical coordinales in which the variables are

la=(l/r)(ro+r:,-), v=(l/r)(ro--rx), and _o, and
where re and rz, rer(,r to the distances of an arbi-

Irary petal from the nuclei O nnd N, respectively.

The parameter r still represents the internuclear

separa(ion and it is ,flso the distance 1)etween the

foci or the associated ellipse.

Remembering now that r is in angslroms and using

following expression for the parameter k:

[v4,d - v2(u4q - 1 ) 4-/,21 exp (--.ru--yv) cl_ dv (I_

Lf" #')]exp(--'r#--Yv)e°s=_°d_o(lvdy
1 d 1 rill

the ordinary atomic wave functions, we obl'dn the

(43)

_,vllere z._ analogonsqu.'mlity (,-.-3.90) for atomie nitrogen

x [(z_q-&)/4(O.5292)]r--3.9919r

y [(z,--z,,)/4(O.5292)]r--O.3071r

zl effective nuclear charge seen by an L-shell

electron in atomic o_-gen (_4.55)

In the ease of fairly large internuclear separa-

lions, it is obvious from the definition of the

elliptical coordinate system, and from the fact

that the major contributions to the overlap

integrals come from the region roughly h'tlf way

between the nuclei, that a very reasonable
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assumption at this point should be the setting of

v equal to zero. For the purpose of obtaining an

idea of tile error thus introduced, we shall suppose

tha_ the maximum contribution is attained along
tile line (l/2)(a_q-az)--a,._O.04 .Yk to tlm oxygen

side of tile geometric center of tile molecule.

This corresponds to the position of touching of
Bohr-type orbits, and the resulting shift will be

assumed constan( over all greater separations.

Assuming, in addition, that tile effective mag-

nitude of u remains of tile order of unity, we have

the following effects on the integrands of equation

(43):

(1) The value of v for the at)eve displacement
of 0.04 ._., and for r=2.7 ._, is _ --0.03.

Since the smallest power of v appearing
in the inlegran(ls is _,2, it is easily seen

that this particular effect of the assump-

tion v=0 is to increase only slightly the

values of the overlap integrals.

(2) The negh,('l of v, on the other band,
serves to decrease the values of lhe over-

lap integrals through the omission of rite

factor exp (-- yv) _ exp ( + 0.025).
(3) The exchange integrals are further de-

creased xxqwn hill advantage is taken or

lhe geometric mean procedure disenssed

in connection with equation (31). This

implies tlmt lhe expressions given in

equalions (40) and (41) shouhl be multi-

plied t) 3" the factor

[E(o) E(N)] "_
2 E(O) +E(N)

(4)
which is slightly less than unity.

Fi,mlly, the net ('fleet of (1) and (2),

only, is to decrease the exchange integrals

t)y a very small amounl for the range

under consideration. IIowever, as pointed
out in a recent paper by the attthor (ref.

7), and lmrlieularly in regard ta the sup-

posedly rigorous calculation of the X-TI

state, the effective nueh,ar charges are

prol)at)ly a bit larger than the ones men-

tioned at)eve. In consequence of this,

tile exch,mge laterals shouhl be reduced

slighlly because of the more compacL

charge distributions and resulting (le-
crease in overlap. Tlms, the eli,ninalion

of v is perhaps better for our purposes

than is a direct ewtluation or the integrals
in equation (43).

In view of the above arguments, the expression
for k may now be x_q'itten

or

I (_4__/22) exp (--x#)dg

k=[-_ (z_±2x_+Z_) _7-_
I_(,% 5x_+ 12z+ 12)j

(44)

(45)

As mentioned earlier, the character of the

exponentials in equation (44), that is, Ill(, form of

essentially a produt't of exp(--z_r) and exp(--&r),

justifies to a large extent the use of the geomelrie

mean in the delta-function model in preference to

the arithmetic average.

The results for the resonance parameter, X, as
calculated fl'om equation (34) using equation

(45), are presented in table V[ and shown _aph-

ieally in sketch (d). A comparison with t]_e

t=0.5 assumption of Vandersliee, lfason, and

Mais('h (ref. 17) is also indicated.

TABLE VI. TIlE RESONANCE PARAMETER FOR

NO AND ASSOCIATED PROBABILITY

2.5

2.6

2.7

2.8

2.9

x P

0.5:17-I 0.03-t5

.5363 .0331

.5016 .0288

,4495 .0230

.3860 .0168

.6

I I I

2.6 2.8

r,A

Sketch (d).--Resonanee parameter for NO.
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Also shown in table VI is the probability of the

resonance state O +- N-, as computed fi'om cquat ion

(28). Its small magnitude further justifies our

use of equations (32) and (33), x_qthout any ionic

contributions, and explains the wdidity of the
iIulburt-llirsehfelder curve fit in connection with

the gTound state. At the same time, since the
thdburt-Itirschfelder function also excludes any

ionic effects, we can reasomdfly postulate that

such good fortune will not prevail in the case of
diatomic oxD-gen, where X is approxinmtely equal

to 1.5 and P is correspondingly much larger.
These ideas have been confirmed in recent calcula-

tions on Oa by the theoretie_d group at the

University of 5[aryland (ref. 21).

A question might reasonal)ly be asked at this

point as to why, if the ionic forces are negligible

anyway, we even bother to introduce X into
equations (32) and (33). The answer is, of

course, in order to have some means of correcting

or accounting for the fact that the orbital occupied

by the "extra" electron is warped one way or

the other, depending upon whether it is an
attractive or a repulsive bond, and theret)y to

include the pevlmps nmch larger effect on the

exchange forces. Thus, the use of a resonance

parameter without an ionic force is eniirely con-
sislent in this prol)lem.

TIlE 4H STATE OF NO

As mentioned previously, Vanderslice, et al.

(ref. 17), employ a very approxinmte method for

obtaining the excited qI state of nitric oxide, with

the result that a strange hump apl)ears in the

potcntiaI-energy curve even though no rotation is
included. It was, therefore, thought interesting

to pursue this question of the existence of an
activation energy more thorm@fly in the light

of the present: procedure.
The electronic configuration of the qI st'lte is

(_)-_(n_)(n*)(_,)o(n*)

with the corresponding energy given ])3'

VOH)- &,--(2--X)J. (46)

or

VOII)-J,/k-2+x) (47)

Dividing by equation (32), one readily obtains

V(4H) = I7(2II) (1 --k--_X ) (48)

The results are given in table VII, together
with those of VanderMiee, et al., corresponding

to points beyond the negative minimum, and it,

is seen that the huml) has now disappeared.

THE N2-Oa INTERACTION

The interaction between nitrogen and oxygen

atoms, each of which is a member of its own

respective diatomic moh,(.uh', tms already been
discussed and smnmarized in equation (26),

which may now be written

z 2
--_--_ Jyu(k+ 2) (49)

Dividing by eq_mtion (32) and solving for V,
we obtain

=-g kk+x/ (50)

the resulls of w]fich are nicely curve fitted by the

equal ion

V= I'o exp(--ar) (51)

The desired interaction between nitrogen and

oxygen moh,cuh,s may now be expressed as a sum
of the four atomic interactions, each of which is

given in the form of equation (51), the orientaiion

depcmtence being implicitly included through the
four values of internuclear separation. In many

instances, however, and if the interm,)lecul:w

separation is sufficiently large, it, is convenient to

average (ref. 17) the total interaction energy (q_)

TABLE VII. TtIE V(r) INTERACTION FOR TIIE

_H EX :ITED STATE OF NITRIC OXIDE

2.5
2.6

2.7

2.8

2.9

Ref. 17 Eq. (48)

0. 0488 --0.1657

• 0453 --. 1265

• 0376 . 0979

• 0288 --. 0767

.0207 - .0606
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over all orientations to obtain

,I, (R) = 4 l"o exp (-- a !77)(a,3Rd fl2) -

adl •

(?)--4 {aa, _..': ."sinh cosh \,_)}

where

II dishmee in angstroms between the cenlers
of mass of the molecules

dl,d2 bond lengths of O_ and N2, respectively, that
is, 1.207398 and 1.094 -_ (rcf. 13)

This equation yields the resuhs shm_m in table

VIII and plotted as curve III in sketch (e). Also

TABLE VIII. -INTERACTION ENERGIES FOR

15

IO

.5

TItE Na--Oa SYSTEM

[

I

2.5

2.6

2.7

2.8

2.9

I I

F

Eq. (52) Eq. (53)

0. 7377 0.7287

.5651 .5692

.-I396 .,1-I16

.3457 .3473

.2741 .2713

I

V

"-/. C/TM
I I

2.5 30 3.5

Sketch (e).--Comparisons of N2--O2 interaction energies.

shown, for purposes of comparison, are the {we

computations of Vamlcrsliee, Mason, and 5[aiseh
fief. 17), both with (curve II) and wiflmut (curve

I) the addition of the second-order London dis-

persion energy. The broken curve (V) is simply
a graI)hieally conslructed connection belween the

present resuhs and curve IV, which was derived

(ref. 17) from measurements of the viscosities of

diatomic nih'ogen and oxygen at high lcmpera-

tures. Finally, as illustrated in column 3 of lable

VIII, a fairly good approximation to equat ion (52)

is Dven by the exponenlial formu]_

4'(R) =A exp(--BR) ev (53)

where A aml B have the v'dues 350.3 and 2.470,

respect ively.

As is evidenced by the somewhat greater con-

sisteney of curve III with the one derived f,'om

high-lemperature-gas viscosily data and l|t¢, rela-

tively greater ease with which the gap can be
covered by a reasomtbh, inlerpolation, the present

procedure of using the delta-function model, a
variable resonance parameter, and the ratio of

exchange integrals would seem to be preferable

to that of previous calculations. A somewhat

different analysis of the introduction of lhe pa-

rameter k will be presented below in connection
with 02--02.

The procedure of Vanderslice, Mason, and
Maisch, however, does present a reasonable first

approximalion and, in consequence of the fewer

equations involved, may prove quile useful in

dealing with more complicated species. In par-

lieular, lhe choice of 0.5 for X is jusl about as good

as can be obtained within the limitalions imposed

by the assumption that it is independent of inter-

nuclear separation. The principal blame for lhe
discrep,meies between curves lI and IlI in sketch

(e) probably lies in the facl lhat the nmge covered
in the Na--Oa calculation falls precisely in the

region of the hump in the _II stale of nitfie oxide,

which slate phtys such a vital role in the Vamh,r-

slice, et al., method.

It. is, on lhe other hand, difficult to assess the
absolute accuracy of the present calculations be-

cause of lhe lack of experimental scattering data

to determine the potential eurve at smaller sepa-

rations. Its justification must depend to a large
extent on the fact that the procedure involved is
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basically the same as that of the previous treat-

meut of Nz--N..,, for which scattering data were

available and with _iich excellent agreement was

obtained. Indeed, the observable variations (e.g.,

the divergence of curve III from curve V resulting

h'om the neglect of dispersion forces) may be ex-

plained in a similar fashion to the explanation of
the variations connected with the X2--N2 problem.

N loreover, a very in t cresting observation on curves
I and II at 2.9 ._ indicates that their difference is

very close to what is needed to make curve III

coincide with V, that is, the simple London dis-

persion energy may be added to the present results

to obtain the complete potential curve beyond
this point.

OXYGEN INTERACTIONS

METItOD

The interaction energy between two oxygen
molecules will now be determined in much the

same manner as i, the previous calculations on

N2--N._ and N2--Oz. Again, because of the

compact charge distributions, O+--O - resonance

(three-electron bonds) between atoms belonging

to different O_ molecules will be ignored. There

remains then the following set of nine possibilities:

(molecule A) (molecule B)

Number of electrons

P_

2

2

2

I

1

in--

I_

t

l

1

1

1

_'umber of electrons

Z
1 1 2 1

1[ 1 2 1

1 [1 2

P, P. Pv

1 1 1 2

1 2 1 l

2 1 2 1

1 1 1 2

1

A straightforward application of the approximation of t)crfect pairing to each of these configurations
yMds, since the spins are random,

where the x direction is taken to coincide with the

line of nuclear centers.

On setting J_v=J,, as a consequence of axial

symmetry, this equation may be reduced to

S. 9
l'(r)=--_ ( J_,+-Jvv) (55)

1 1

There remains now only the task of eliminating
J_ arid Jv_ fl'om equation (55) in order to specify

uniquely this interaction. As mentioned pre-

viously, however, the ground .\-3_ - state of 02

cannot be used for this purpose because of the

imibility of a ]Iulburt-IIirschfeldcr function to

cope with the O+--O - resonance phenomenon

arising from three-electron bonds; that is, the use

of this empiricM function would yield a potential

curve lying above the correct one. In fact, the

only diatomie state, and there are 18 fief. 22)

(54)

which can dissociate into normal (sP) atoms, for

which such an empirical flmclion appears to be

rigorously confirmed by a Rydberg-I_cin-Rees
calculation (spectroscopic data) is (ref. 21)

_a_: (_y(ny(nd)-_(n,) (II,*)

where the two three-electron bonds of

x_220-[(_)_(IL) _(ii.*) (rL)_(ii:*)]

have been replaced by one consisting of two
electrons and another conlaining four.

The appropriate equations for this state are

V(aA.)--0.9154[(1-- e-°)_

+0.021247#_e-2e(l+l.3282fl)-- 1] (56)
where

(r --2 1'4804"_ (thdburt-IIirsch folder)
_=5.4637K 1.4804 ]
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and

x'(,_u)= Jx,-3&_

(approximation of perfect pairing) (57)

where the four-electron bond has been obtained

by means of a straightforward extension of the

procedure for tile three-electron variety discussed

previously in connection with nitric oxide. The

result, of course, is that tile electrons involved

may again be described as belonging to atomic
rather than molecular orbitals and with a con-

tribution (random spins) of 4(}{--_{)J_u=--2J,,

to the interaction potential. The question of
resonance thus does not enter this discussion.

Finally, a delta-function computation per-
formed on an exeit.ed slIg stale of Oa is used to

complete the aforementioned Oa--O., requirements

in the long-range "tail" region.
As a further check on the wdidity of the above

representation of the ah, state, since there is some
uncertainty in the numbering of the vibrational

levels fief. 21), a second caleulat ion was performed

using the _k_ state as a basis. Despite the fact

that the Rydberg-Klein-Rees curve for this state

is not known over a. large enough range to furnish

a stringent test of the fit of an empirical potential,
it, is believed that the IIullmrt-Hirschfelder func-

tion shouhl suffice because of the following two-
and four-electron bond structures:

'a_: (_,)_(rry(rr_*)_(n_) _

The equations corresponding to (56) and (57)
aro

V('_,) = 4.230[(1 -- e -0)2

-I-0.089501¢_e-'(1-}- 2.6976fl)-- 1] (58)

where

and

fl=a.4203 \ 1.2155 y

(59)

Altogether four determinations of V(r) were

made and they may be summarized as follows:
1. 3Au (Ihflburt-Hirschfehler) and _iI o (delta-

function model) states of O.,

2. _A, (Ihdburt-Itirschfehler) and 5II_ (delta-

function model) states of O._

3. 3A_ (Hulburt-Hirse]ffelder) and 1_o (Ihd-
burl-Hirsehfelder) states of O2

4. 5Ho (delta-function model) state of O_
and tile ratio of exchange integrals tech-

nique. An ulterior motive here is, of
course, an investigation of the wdidity

of the introduction of the parameter k in

the N_--O: problem. In addition, wdu-

able insight into the limitations of the

approximation of perfect pairing should

be gained.

THE _II o STATE OF O1

TIle electronic configuration most appropriate
for treatment by a delta-function model is that
state in which each valence electron is antibonding

to its maximum extent, subject to the condition

that the dissociation produ('ts are normal atoms.

The st ate most closely fulfilling these requirements

appears to be

5H0:(_z) (cry*)2(H_) (Hv*) 2(n,) (II,*)

provided the internuclear separation is large

enough that the ma_fitudes of tile coefficients of
linear combination of atomic orbitals are not

effectively different from 2 -1/2.
In the case of complete resonance (homonuclear

molecules) it was found previously that the
associated resonance parameter (X) shouhl

approach (for small separations) one of the values

4-3/2 for tile "extra" electron in a three-electron
bond. Actually, this statement is true over the

entire range of r as long as one stays within the
confines of simph, molecular orbital theory; but

second-order approximations, namely the intro-

duction of configuration interaction, indicate that

IX[ should decrease from 3/2 at large distances.

An investigation of these effects is presented in a
later section.

Tlms, on remembering that a delta-function
calculation does not in itself include ionic con-

tributions, we obtain, by application of the

approximation of perfect pairing,

1
V(sIIo) = --_ (5J_¢+ 7Jv_) (60)

Tile delta-fimction equations arc basically the

san](' as equations (15), except tlmt the ionization

potential (13.550 ev), the outermost atomic shell
radius (0.48 ._), and the effective number of

hydrogen-like electron pairs (6) now refer to
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oxygen rather titan nitrogen. Again the param-

eterp in equation (15b) is taken to be 0.55, which

might possibly cause the interaction potential to

be slightly too high; however, as explained above,
this should be of only minor significance. The

results of this computation, together with those

from equations (56) aml (58), arc presented in
table IX.

THE V(r) INTERACTION

If equations (55), (57), and (60) are combined on

the one hand, and (55), (59), and (60) on the other,

the interaction between atoms belon_ng to two

different 02 molecules may be expressed in the

following two ways:

v(,.) =:9 [l°I'(_rI_)+3U(_'x")] (61)

ftnd

I'(r) = 2 [2V('_Ho)+l'(_o)] (62)

The results, as presented in lhe second and third

eohmms of table X, are ve_" consistent with each

other, thereby indh'ectly implying that a ttulburl-
Hivschfeldev function is wdid for both the sA:

and _Ao sta[es of 0,.

The remaining two determinations of l'(r) arc

obtained from the combination of equations (55),

TABLE IX. TIIE V(r) INTERACTIONS FOR O--O

2.5

2.6

2.7

2.8

2.9

- O. 0387

• 0269

• 0187

.0130

--. 0091

0. O854

-. 0638

--. 0491

--. 0388

-. 0312

_lI_,

0.3278

• 2-t83

• 1880

• 1423

• 1077

TABLE X. -TILE l"(r) INTERACTION FOR 02- 02

[____ 65 I Eq. (61)
0.1278

• 0971

.0737

2. 8 .0559

2. 9 .0424

Eq. (62)

0.1267

• 0962

• 0726

•0546

• 0409

E( I. (63)

0. 1382

. 1059

.0842

.0688

.0572

E( t. (64)

0.1179

• 0892

• 0674

• 0510

• 0386

157), and (59), ,rod fi'om (55) and (60), together
with the definition of k in equation (42), as
follows :

ttnd

V(r)=_ 131"(a,%)--5I'(t_,)] (63)

( t:+2"_ (64)

Since Zt=Z., in this case, the equation analogous to (43) becomes

f /'.co F-}- 1 p2¢ "_ 2

i i l [va"2--v2(t?+l)+t2]exp (--xu)d¢dvdu i

3 J0 [v4(/--1)--v2(u4--l)+(u4--u2)]exp(--x_)e°s2_dcdvd" J
(65)

where x=Zr/2(0.5292), and Z is the effective

nuclear charge of an L-shell eh, ctron in atomic

oxygen ("--4.55).
In contrast 1o the handling of the nitric oxide

problem and because of the fact thai y is

identically equal to zero, thus making invalid one

of the principal arguments in support of sc[ting

v equal to zero, equation (65) was evaluated

directly to obtain

l, (x4+2xS--3x2--15x--15_ _
\. / (66)

Cah'ulations based on equations (63) and (64)
are shown as columns four and five of table X,

where it is seen tlmt they are in faMy good agree-
ment with each other and with columns two and

three. For examph,, the deviation between the

results of equation (64) and the average of (61)

and (62) is only about 7.5 percent, indicating that

the ratio of exchange integrals technique is a

reasonable approximat ion whenever suftMen t spec-

troscopic data are not available. A further

discussion of this approach is presented in the

section "Limitations of the Approximation of

Perfect Pairing."

THE RESONANCE PHENOMENON

Since tit(, sHo slate of 0.2 t)lays the role of a
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common denominalor in equations (61) and (62),

and since the equations agree so well with each
other and are at the same time at odds with the

results of equation (63), the implications are quite

strong that something nmst be _sTong with either
the delta-fnnelion model or the slate chosen to be

represented by it.
An obvious first, correction wouhl seem to be a

reduction in the parameter p of equation (15b);

but it has been stated previously lhat, if anything,

p shouh[ be greater than the X_ wflue of 0.55 in
order to approach the correel linfit of unity as the
atomic number increases. A more direct modifi-

cation would be perhaps the addition of configura-

tion interaction between states of the same sym-

metry species to account for the hreakdown of

simple molecular orbital 1heory at large separa-

tions. This effect is more important here than

for N--N and N--O because of the more compact

(larger effective nuclear charge) electronic charge
distributions of O--O. Thus, the distances be-

tween aloms need not be as _'eat as before to

produce the same molecular orbital deficiencies,

a fact confirmed to some extent by the increase in

percentage deviation from S to 27 between the

results of equation (63) and the average of (61)
and (62), as r goes from 2.5 to 2.9 ._.

Furthermore, the '_Ho slale, for examl)le ,
described in equation (60) should interact to some

degree with the configuration

% :(_y(_*) (n.)-_(n?) (n_) (n_ *)

the existence of which is 1o be expected on the

basis of the incorrect, simple molecular orbital

predi(,tion that both "extra" eleelrons might
possibly be found on one atom, even at large

separ,ttions.

Although an exact treatment of this problem is

beyond the scope of the present paper, it is never-

theless apparent lhal the need for configuralion

interaction may be roughly satisfied by the intro-

duction of a variable resonance parameter ([X1<3/2
and decreasing with increasing separation) into

equation (60); that is,

V(sIIo)=--(I+X)J,,--(2+X)J,_ (67)

where it. is assumed that the X associaied with the

x direction is not far different from that associated

with y.
A sinmltaneous solution of this equation with

(57) and (59) then yiehls

v(%)-I [3v(_a,,)- 5v(_ao) ]

x= v(_a.)_2v(_) (6s)

The results, as given in table XI and plotte(1 in

sktqch (f), are of the predicted order of magnitude,

and the general behavior is seen to resemble very

closely that of the nitric oxide calculations of
sketch (d). The variation in the latter, however,

is smaller than that of equation (68) because, for

example, of the exqstence of only one three-electron
antibond in the r'_-2, slale of NO. Consequently,

conversion of this 1o a three-electron bond, as is

(lone in the Oa (qIo) state above, wouhl further

imply a change fi'om approximately "gerade" to

"ungerade" symmetry. This results in smaller

off-diagonal interaction matrix elemenis.

Indeed, these agTeements shouht prove quite

influential in any future attempt to corroborate

the initial assumptions.

LIMITATIONSOFTHE APPROXIMATIONor PERFECTPAIRING

A determination of the parameter k from the

aA_ and _ states of Oa furnishes an excelh'nt

TABLE XI.-. TIIE Oa RESONANCE PARAMETER, X

r Eq. (68)

2.5 1.3049

2.6 1.2828

2. 7 I. 1718

2.8 1.0044

2.9 .8147

1.4

1.2

t.O

%
1 ]

2.7 2.9

Sketch (f).--Resonanec parameter for Oa.
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example of the limitations of the approximation

of perfect pairing. The simultaneous solution of
equations (57) and (59), in conjunction with the

definition of k, yields

z. V(3a-)-;3V('A,)
_'= _ (69)

the results of which are found in table XII,

t ogctlwr with those from equation (66), for

purposes of comparison.
The order of magnitude discrepancies, as well

as the obviously incorrect decrease in k with

increasing r, may be most easily explained in terms

of the following three examples:

(1) In the usual case of using the approxima-

tion of perfect pairing to find the relation
between three different, states of a

molecule, the equations involved are of

the general form

V, =aJ_+bJ_+ F,

I :2= cJ,_ + dJuv-l- F..,.

la = eJ_, +fJvy + Fa

where F_ represents the corrections due

to Weinbaum type (ref. 23) ionic terms,

etc., in the wave function. It is then
assumed that these corrections are small

enough that they effeetively cancel out

in the equation of l_, possibly, as a linear

combination of V_ and I_; or in other

words, the corrections add in the same

fashion as the exchange terms. The truth
of these assertions is difficlflt to ascertain,

although such seems to be the situation
in the N: problem. On the other hand,

this e×ample may be too simple for any

adequate judgment.

(2) Another technique in which this approxi-

mation might be employed is that of

determining the relation between 171, l_,

and k, where the latter is obtained by
means of an independent calculation.

The appropriate equation in this case is

V_ ak+b-l-(FJ,]_,) ak+b
V2--ck + d+ ( F2/ J,) =-_" + d

provided k is large enough that the
correction terms are insignificant in

comparison. The agreement of the pre-

vious N2--O_ curve with one obtained

from high-temperature-gas viscosity data

seems to justify this approach, at least
insofar as states for which the ionic

contribution is known to be of minor

importance arc concerned.
(3) Finally, in the example of this section,

k is found soMy from the relation between

lq and I:z, but under the same general

restrictions that apply in ease (2). The
ionic F fimelions associated with the aA_

and _A_ states of O.,, while apparently not

strong enough to affect critically the

Hulhurt-Hirschfelder descriptions, never-
theless are not so weak 'ts to be negligible

in the computation of/c. In contrast to

the ground state, where conversion of the
two three-electron bonds to antibonds

results in a quite different energy and

ordinary empirical curve fits are not

possible, the corresponding aa, and _k0

configuration interaction states have the

same valence bond energy as their

counterparts. These are, respectively,

I'= J_-- 3J_

TABLE XII.--THE RATIO OF EXCIIAXGE

INTEGRALS, k

r

2.5

2.6

2.7

2.8

2.9

Eq (66) Eq. (69)

52.56 4.655

5& 71 4.455

65. 22 4. 227

72.10 4.009

79. 33 3. 820

and

(a_) _(II_) 2(Hv*)2(H,*) 2

l'=&_--J_

Hence configuration interaelion, together

with its implied decrease in ionic forces,
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is much more important for the ]alter 02

excited species.

In spite of these uncertainties, the Oa--Oa

interaction in the following section was computed

on the basis of equation (63)• A more valid

representation, although not enough information

is available to evaluate all the unknown param-

eters, is

V(r) _4 [3V(aau) _ 5V(tkg) + 5F(Ikg) -- 3F(aA=) ]

where the condition for the recovery of (63) is

easily seen to be

F('A,)=_ F(_a,,)

The wdidity of our procedure must, therefore, rest

on whether or not the three _Ag configuration
interaction states effectively lower the ionic

contributions below those corresponding to 3A=.
Such an occurrence does not seem too unreasonable

in view of our present knowledge.

In summary, the usefidness of the approxima-

tion of perfect pairing lies in its ability to yield

linear relations between potentials corresponding

to several different states. Any other application,
such as an attempt to analyze the component paris

of a particular state or to calculate the energy

directly, must be carried through only with the
most extreme caution.

THE O2-O2 INTERACTION

Curve fitting the results of equation (63) by

means of an exponential function, and then

averaging the total 02--02 interaction energy over

all orientations according to equation (20), where
tlle London dispersion energy must be omitted

and d= 1.207398 X for the bond length of ground

state 02, one obtains the potential values given in
cohmm 2 of table XIII. The results tabulated

in column 3 were computed from the associated

expression

• '(R) = 146.6 exp(--2.109R) (70)

and it is seen th,tt the agreement here is'to about

one si_dfieant figure. Finally, column 4 of this

table represents the high-temperature-gas viscosity

data (ref. 17) as e,dculated from the following

TABLE XIII.--TIIE Oa--Oa INTERACTION ENERGY

R

2.5

2.6

2.7

2.8

2.9

3.2

3.3

3.4

3.5

¢(R)

0.7757

.5999

.4812

.3963

.3314

_,'(R)

0. 7532

• 6100

• 4941

• 4001

•3241

_"(R)

0.0246

.0069

--.0030

--.0082

modified Buckingham (exp-6) function (ref. 24):

• I-6o(,-_.) /_Vq
• e " -L-R) .J (71)

where

• depth of the Van der Waals minimum (0.01137

ev)

R,, position of this minimum (3.726 _)

o_ dimensionless parameter measuring the steep-
ness of the repulsive energy (17.0)

It is estimated from the temperature range of the

viscosity experiments that this curve is not wdid
for distances smaller than about 3.2 _.

In sketch (g) are plotted tile results of the pres-

ent paper (I), together with those from thc vis-
cosity measurements (II), and the ease with which

the gap between the two regions can be covered by
a reasonable interpolation (III) is quite apparent.

The divergence between curves I and III in the
neighborhood of 2.9 e_ may again be attributed to

1.0

,'-i

¢.5

\

% z--_
% ,"

%

0 I _ ,
2.5 3.0 3.5

Sketch (g).--Comparisons of 0_-02 inter./elion energies.
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the neglect of dispersion contributions, effects

which are more important here than in the pre-

vious examples because of the smaller cutoff dis-

lance arising fi'om the interpenetration of more

closely packed charge dislrilmtions.
Also shown in sketch (g) is a curve (IX') derived

from vibrational relaxation time data (refs. 25-29),

this being the only experiment al information awdl-

able in the region covered by the present theory.

An analysis of vibrational deactiwttion theory
shows that the discrepancies between curves I and

]V are to be expected on the basis thal the latter

is a one-dimensional treatment involving only the

end-to-end molemflar configuration. This geome-

try is chosen, of course, because of the maximum

energy transfer on collision fi'om vibration to trans-

lation; however, it also represents the largest inter-
action ener_- of any molecular orientation and

shouhl not strictly be compared with the random
situation covered here. An additional basic defect

of the vibrational theory, as pointed out by Cot-
trell and Ream (ref. 30), is that the slope of the

true interaction curve is not m, arly as large as that

of thc theoretical one, an observation which is

clearly borne out in this example.

The recent calculations of Vandersliee, Mason,

and Maisch (rcf. 21) have been omitted from the

above comparisons because of essentially the same

reasons discussed in the preceding paragraph. ]n

effect then, any absohlte confirmation of the be-
tmvior of curve I must await the performance of

a suitable scattering experiment.
A final rather interesting observation is that the

N_--N2 repulsive curve is generally lower than the

one corresponding to 0.,--02. Thus, the effect of

the existence of one more electron pair in any

O--O type of interaction seems to overshadow the

fact that the electronic charge distribution of nitro-

gen is less compact and thereby results in greater
individual repulsive overlap. The N2--O_ curve,

on the other hand, tends to lie slightly lower than

either of the above in the short-range region

(_2.6 fit) because the overlap between similar
transverse orbitals A and B on atoIns of different

species is generally smaller than that between
orbitals A-A or B-B at the same separation.

AMES "Pt, ESEARCtl CENTER,

_ATIONAL AERONAUTICS AND SPACE ADMINISTRATION,

_[OFFET'r FIEL1), CALIF., Sepl. 25, 1959.
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